Oh, where does the centroid go?

March 14, 2011

Student Ryan Tagling

Prospectus Up to scale there is only one catenary, $f(x)=\cosh (x)$. One of its interesting geometric qualities is that if $[a, b]$ is in the domain of f, then the geometric centroid of the arc-length of the graph of f between $x=a$ and $x=b$ lies directly above the centroid of the area under the graph of f, $x \in[a, b]$ and the x-axis.

Question 1: Does this property characterize the catenary? If not, what other curves are so characterized? Can the curve be the boundary for a smooth, compact object or is it necessarily unbounded.

Question 2: What happens if we stipulate that the centroids of the arc and area are two points on various geometric figures such as an isosceles triangle? Can we isolate interesting (well-known) curves?

Question 3: The centroid of plane figures has to do with the first moment about the coordinate axes. What about higher order moments?

References

[1] V. Coll and M. Harrison, Two generalizations of a property of the catenary. To appear.
[2] E. Parker, A property characterizing the catenary, Mathematics Magazine 83 No. 1 (February 2010) 63-64.

